β1-Integrin alters ependymal stem cell BMP receptor localization and attenuates astrogliosis after spinal cord injury.

نویسندگان

  • Hilary A North
  • Liuliu Pan
  • Tammy L McGuire
  • Sarah Brooker
  • John A Kessler
چکیده

Astrogliosis after spinal cord injury (SCI) is a major impediment to functional recovery. More than half of new astrocytes generated after SCI are derived from ependymal zone stem cells (EZCs). We demonstrate that expression of β1-integrin increases in EZCs following SCI in mice. Conditional knock-out of β1-integrin increases GFAP expression and astrocytic differentiation by cultured EZCs without altering oligodendroglial or neuronal differentiation. Ablation of β1-integrin from EZCs in vivo reduced the number of EZC progeny that continued to express stem cell markers after SCI, increased the proportion of EZC progeny that differentiated into GFAP+ astrocytes, and diminished functional recovery. Loss of β1-integrin increased SMAD1/5/8 and p38 signaling, suggesting activation of BMP signaling. Coimmunoprecipitation studies demonstrated that β1-integrin directly interacts with the bone morphogenetic protein receptor subunits BMPR1a and BMPR1b. Ablation of β1-integrin reduced overall levels of BMP receptors but significantly increased partitioning of BMPR1b into lipid rafts with increased SMAD1/5/8 and p38 signaling. Thus β1-integrin expression by EZCs reduces movement of BMPR1b into lipid rafts, thereby limiting the known deleterious effects of BMPR1b signaling on glial scar formation after SCI.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

β1-Integrin and Integrin Linked Kinase Regulate Astrocytic Differentiation of Neural Stem Cells

Astrogliosis with glial scar formation after damage to the nervous system is a major impediment to axonal regeneration and functional recovery. The present study examined the role of β1-integrin signaling in regulating astrocytic differentiation of neural stem cells. In the adult spinal cord β1-integrin is expressed predominantly in the ependymal region where ependymal stem cells (ESCs) reside....

متن کامل

Spinal Cord Injury Reveals Multilineage Differentiation of Ependymal Cells

Spinal cord injury often results in permanent functional impairment. Neural stem cells present in the adult spinal cord can be expanded in vitro and improve recovery when transplanted to the injured spinal cord, demonstrating the presence of cells that can promote regeneration but that normally fail to do so efficiently. Using genetic fate mapping, we show that close to all in vitro neural stem...

متن کامل

Role of endogenous neural stem cells in spinal cord injury and repair.

Spinal cord injury is followed by glial scar formation, which has positive and negative effects on recovery from the lesion. More than half of the astrocytes in the glial scar are generated by ependymal cells, the neural stem cells in the spinal cord. We recently demonstrated that the neural stem cell-derived scar component has several beneficial functions, including restricting tissue damage a...

متن کامل

Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells

The differentiated state of spinal cord ependymal cells in regeneration-competent amphibians varies between a constitutively active state in what is essentially a developing organism, the tadpole of the frog Xenopus laevis, and a quiescent, activatable state in a slowly growing adult salamander Ambystoma mexicanum, the Axolotl. Ependymal cells are epithelial in intact spinal cord of all vertebr...

متن کامل

Regenerative Potential of Ependymal Cells for Spinal Cord Injuries Over Time

Stem cells have a high therapeutic potential for the treatment of spinal cord injury (SCI). We have shown previously that endogenous stem cell potential is confined to ependymal cells in the adult spinal cord which could be targeted for non-invasive SCI therapy. However, ependymal cells are an understudied cell population. Taking advantage of transgenic lines, we characterize the appearance and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 35 9  شماره 

صفحات  -

تاریخ انتشار 2015